
JOURNAL OF APPROXIMATION THEORY 72,317-328 (1993)

Complex Zolotarev Polynomials on the
Real Interval [-1, 1]

C. DETAILLE AND J.-P, THIRAN

Department (J{ Mathematics, Facu/ti's Universitaires de Namur, B-5000 Namur, Be/f:ium

Communicated hy G. l.1einardus

Received April 8, 1991; accepted December 6, 1991

We consider complex Zolotarev polynomials of degree n on [ - I, I], i.e., monic
polynomials of degree n with the second coefficient assigned to a given complex
number p, that have minimum Chebyshev norm on [ -I. I]. They can be charac­
terized either by n or by n + 1 extremal points. We show that those corresponding
to n extrema are closely related to real Zolotarev polynomials on [ - I, I], so that
we distinguish between a trigonometric case where an explicit expression is given
and the more complicated elliptic case. The classification of the parameters p that
lead to one of the above cases is provided. t 1993 Academic Press. Inc

1. INTRODUCTION AND NOTATIONS

Given an integer n ~ 2, n EN, and a complex number p = a + i"C,
(a,r)EIR 2

, the Zolotarev polynomial Z,,(z,p) on [-1, IJ is the complex
polynomial of degree n whose first two coefficients are equal to 1 and p,
that deviates least from zero on [- 1, 1]. More precisely, its Chebyshev
norm IIZ,,(p)11 on [-1,1 J satisfies

IIZ,,(p)11 =min {IIP"II,P,,(Z)=Jo GiZ i , a,,= I,

a" I=p,(a" 2, .."ao )EiC" I},

with IIp,,ll=max{/p,,(z)/, zE[-I, IJ}.
By symmetry, it suffices to consider a ~ 0 and r? O. Indeed, from

Z,,(=, p), a simple computation yields Z,,(z, - p) = ( -1)" Z,,( - z, p),
Z,,(z, p) = Z,,(=, p) and, consequently, Z,,(z, - p) = ( - 1)" Z,,( - z, p), where
the upper bar stands for complex conjugacy,

The problem originally stated and solved by Zolotarev refers to p E IR,
i,e., p = a [1-3,6]. As is discussed, for instance, by Carlson and Todd in
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their expository paper [3 J, there is a critical value }' = n tan 2 [n/(2n) J such
that the solution is expressed in terms of trigonometric functions for (J ~ {'

and in terms of elliptic functions for (J ~ }'.

Recently, for purely imaginary values of p, i.e., p = ir, an explicit
expression of Z,,(z,ir) has been obtained by Freund[5J when r~1

and by the authors [9 J when r ~ I. If Tdz), kEN, denotes the Chebyshev
polynomial of the first kind, i.e., Tk(z) = cos k,9, z = cos 9, then

Z,,(z, ir)=2 1 -"[T"(z)+2irT,, dz)-6T" 2(Z)J, (I)

where J = r 2 for r ~ 1 and 6 = 1 for r ~ I.
The object of the present work is to investigate Z,,(z, p), p = (J + ir, for

nonzero values of (J and r.
By the well-established theory of uniform approximation by complex

polynomials, Z,,(z, p) exists, is unique, and satisfies the following
characterization [7,8].

THEOREM I. The Zolotarev polynomial Z,,(z, p) on [- I, 1J is charac­
terized by m extremal points z ,E [ - 1, 1J, j = I, 2, ... , m, with n ~ m ~ 2n - I,
such that

lI'ith

j= 1,2, ..., nt,

OJ

I SjP" 2(Z)=0,
i~ I

S("'O, sgno5/=£j, allp" 2' (2)

where sgn 05, = o5)lo5 j I.

For the problem at hand, it is not hard to verify that Z,,(z, p) has at
most 11 + I extrema in [- I, I]. Hence, the parameters p can be classified
in a set A for which m = n and in a set B for which m = n + I. For example,
p = (J E A for all (J ~°whereas p = ir is in A for r ~ 1 and in B for r E (0, I).
In Section 2, we show that, for any pEA, Z,,(z, p) is connected with real
Zolotarev polynomials. This leads us to distinguish between a trigono­
metric case for which an explicit expression of Z,,(z, p) is given in Section 3
and the more complicated elliptic case that is treated in Section 4.

2. RELATIONSHIP BETWEEN REAL AND COMPLEX

ZOLOTAREV POLYNOMIALS FOR pEA

When m = n, the coefficients Sj in (2) are simply given by c/Q'(z) with
c#O and Q(z)=rrz~, (Z-Zk) [7,8]. This yields G;=l/SgnQ'(zi)' where
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'7 = sgn c. Moreover, there holds an expression of Z,,(z, p) in terms of its n
extremal points.

THEOREM 2. For pEA, Z,,(z, p) is given hy

Z,,(Z,p)=1J IIZ,,(p)11 L IQ'(zj)I-1 Q(z)/(z-z)l+Q(z), (3)
i~ I

with

(4)

Proof By (3), Z,,(=, p) is a monic polynomial of degree 11 and, by (4),
its second coefficient is p. From (3), we easily find Z"(z,, p) =
IJ sgn Q'(z,) IIZ,,(p)ll, as required. I

In the sequel, we order the extremal points with increasing values, i.e.,
:1 <:2 < ... < :", so that sgn Q'(:)) = (-I )"j, J= 1,2, ... , fl. To determine
them, we need the following result that is basic for the remainder of the
paper.

THEOREM 3. For p = a + ir E A, the extremal points z I' Z 2, ... , Z" of
Z,,(z, p) are those olthe real Zolotarev polynomial Z,,(:, r) where the real
parameter r is related to a and r hy

r = (J +r
2 i(a +I zi)'

,~ I

Proof Setting IJ = e,:i, we find

(5 )

or

2"(z,, p) = e jii( -I)" i IIZ,,(p )11,

ql(Zj)=(-I)"'II Z I(p)lI,

J= 1,2, ..., fl,

J= I, 2, ... , 11, (6)

where ql/(zj)=9Pe{e ,:JZI/(z"p)}. For :EIR, qll(z) is a real polynomial of
degree n whose first two coefficients are cos:) and a cos .9 + r sin .9.
Furthermore, for zE[-I, I], we have Iql/(:)I~IZ,,(z,p)I~IIZ,,(p)11 so
that, by (6), ql/(:) assumes its maximum value with alternating signs at
:"=2""'=1/' By virtue of the equioscillation theorem [2,6], qll(=)=
cos 9 ZI/(=' r), where r = a + r tan .9. In view of (4), we compute tan ,9 =

r/((J + L;'~ I z) and we obtain (5). I
Note that, for given r, Eg. (5) defines a circle C in the p-plane. For
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1" = 0, I' is evidently equal to o. For 1" -# ° and 0 -+ 0, L;'~, Z i -+° by
symmetry, so that 1' ...... Xi and Zl' Z2, ... , ZI/ tend to the extremal points of
TI/ ,(z) as was proved in [9] for (I) when 1" ~ I and <5 = I.

The above two theorems will serve for determining all Zolotarev
polynomials associated with pEA. Given I' > 0, we use the extremal points
z" Z2' ... , ZI/ of Z,,(z, 1') to consider

with

"
PI/(z)=P L IQ'(z,lI 'Q(z)/(z-Zj)+Q(z),

i~ ,
(7)

(8 )P = (p +It, Zi)/jt, IQ'(zili '.

For all values of p on C r such that Ilpl/ll = IPI, we obtain p,,(z)=Zn(z, pl.
In order to carry out this analysis, we first establish a technical lemma.

LEMMA I. With the above notations, the following holds for p E Cr

( " )'Ipl/(z)l2_IPI 2
= r+i~lzi

x {((T + It, ZI) [Z~(z, 1') - IIZI/(r)11 2
] + (r - 0) Q2(Z)}.

(9)

Proof In view of (7) and (8), we have

!p,,(zW = [( 0 +J, ZiY + 1"2] R
2
(z)

+ 2 (0 +,t, Z/) R(z) Q(z) + Q2(Z), (10)

where

[ " 11 "
R(z) = i~1 IQ'(z,)1 1 i~1 IQ'(Zj)I-' Q(z)/(z - zJ

Now, Z,,(z, 1') is obtained by putting p = r in (3) and (4), so that

(II)
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Hence, making use of (5), we write (10) in the form
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Combining (4) in which p = r, (5) and (8) yields

and, by subtraction with (12), the quoted result (9). I
We shall partition A in a set A I when r:::; y and a set A z when r> I"~

thereby defining the trigonometric and elliptic cases treated in the next two
sections.

3. THE TRIGONOMETRIC CASE

For r:::; y, the explicit expression of Z,,(z, r) is [3, Theorem I]

Z,,(z, r) = 21 - "( I + rn - I)" T,,(x),

Whence we prove

x=(z+rn 1)/(1 +rn I). (13)

THEOREM 4. For 0< r ~}' and p = (1 + ir E C, (1 ~ 0, r ~ 0, p,,(z) defined
in (7) and (8) is the Zolotarev polynomial Z,,(z, p) and, consequently, pEA 1 ,

iff

(14 )

Proof By virtue of (l3), IIZ,,(r)ll=2 1-"(l+rn I)" and zj=(I+rn I)
cos[(n - j) n/n] - rn- I

, j= 1,2, ..., n, so that

"L zJ = I + r(n - I - I ).
j~ 1

(15)

On substituting these values in (9), we obtain after some computation

,,-1

Ip,,(zW-jP\Z= TI (z-zy (z-I)(z-w),
,~ I

where w = - I - 2m 1 + 2(r - a). Clearly, we have [PIl(Z)[::;; IPI for all
Z E [ - I, 1] iff w ~ - lor, equivalently, iff the following inequality holds

(16 )
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To show that (14) and (16) are equivalent, we insert (15) in (5) to obtain
the equation of C

,2-(r-rr)(rr-r+l+rn 1)=0. (17 )

Rewriting (17) as ,2=rn- I -[rr-(1-n l)rJ[I-r+O'J, and assuming
(16) which implies 0' ~ r - I since n I r ~ tan 2 [n/(2n) J~ I, we conclude
that ,2 ~ rn·· 1 ~ (n - I) 1 0' as required. Conversely, starting from
0'~(n-I),2 where ,2 is given by (17), we obtain [a-(1-n l)rJ
[n(n-I) l-r+O'J~O or O'~(1-n I)r because n(n-I) l-r+O'~

n{(n-I) l-tan2[n/(2n)J}~0. I
We conclude by stating

THEOREM 5. Let p=O'+i" O'~O. ,~O, such that ,2~(}'-a)(0'-y+

I+i'n I), i'=ntan 2[n/(2n)]. If ,2>0'(n-l) I, then pEB. For
,2 ~ a(n - I) I, pEA I' and 2,,(z, p) is explicitly given hy

Z,,(z,p)=2 1 "(I +r*n 1)" 1{(I +r*n l
) T,,(X)

+(p-r*)[U" }(x)-U" 2(X)J}, (18)

where x = (I + r*n 1) 1 (z + r*n 1) and, j(H kEN, Udx) denotes the
Chehyshev polynomial of the second kind, i.e., Udx) = sin[(k + I) (n/sin .9,
x = cos(). The real constant r* in (18) is

r*=o-+ [2(n-I)J 1 (0'+n-nv l / 2)

with v=(n 10-+ 1)2-4(I-n 1),2.

(19 )

Proof Given 0- and " the left-hand side of (17) is a quadratic polyno­
mial in r, denoted by g(r). As g(O) = ,2 + 0'2 + 0' ~ 0 and g(}') ~ 0 by
hypothesis, g(r) vanishes at some r* E [0, }'J so that pEer*' By virtue of
Theorem 4, p is in B for ,2>0'(n-l) I and in Al for ,2~0'(n-l) I. If
g(y)<O, as g(r)..-. +00 for r..-. +W, r* is the smallest root of gIrl given
by (19). If g{f') = 0, i.e., r* = }', the second root is -y + (n - I) 1 n[1 +
(2 - n I) 0' J which is greater than }' for pEA I' i.e., for 0' satisfying (16).
Hence r* is also given by (19).

For pEAl' Z,,(z, p) is

2,,(z, p) = (p + It, Zi) R(z) + Q(z), (20)

where Q(z) = TI% ~} (z - Zk)' R(z) is defined in (II) and Zl, Z2, ..., z" are the
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extremal points of Zf/(;::,r*)=2 1 f/(l+r*n-I)f/Tf/(x), x=(I+r*n-I)-1
(::: + r*n I). Now, Zf/(:::' r*) is also given by

Z,,(:::, r*) = (r* + I :::1) R(:::)+ Q(:::).
n=1

An easy calculation yields

Q(:::) = 2' "( I + r*n I)" n IT;,(x)(x - I )

(21 )

(22)

and, by (21),

R(:::)=2 1-f/(l+r*n I)" I[Tf/(x)-n 1(x-I)T;,(x)]. (23)

On substituting (22) and (23) in (20) and performing some arrangements
based on the trigonometric definition of Chebyshev polynomials, we obtain
(18). I

4. THE ELLIPTIC CASE

We shall describe Zf/(z, r), r>)', in terms of eUiptic functions with the
notations of Carlson and Todd [3 J, which are based on those used in the
book of Whittaker and Watson [10]. When r>}', Z,,(:::, r) is given by
[ I, Theorem 2J

ZIti:::, r)= IIZf/(r)11 T,,[(X+X 1)/2J,

where

x = - .9) [(nu/2K) - (n/2n)J/.9 1 [(nu/2K) + (n/2n)J

and

such that z is related to II by

The modulus k of the elliptic functions is the unique solution in (0, 1) of

r= n{2 sn(K/n)[cn(K/n) dn(K/n)] -I ([sn(2K/n)J . I - zn(K/n)} - I }.

(24 )

In addition to the extremal points ::: 1 = - I <::: 2 < '" <:::" = 1, there are
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two points Ct < f3 < -I at which IZI/(z, r)1 takes on the value IIZI/(r)\I. They
are given by

(1. = [sn 1(K/n) + 1]/[sn 1(K/n) - I],

Ii = [k 1 sn1(K/n) + 1]/[k1 sn1(K/n) - I],

and they satisfy the relation

1/

2 I(Ct + f3)+ I z/ + r = O.
i~ I

Now we prove

(25)

(26)

(27)

THEOREM 6. For r>}' and p=(J+irEC" (J~O, r~O, PI/(z) defined in
(7) and (8) is the Zolotarev polynomial ZI/(z, p) and, consequently, pEA 1,

ifl t = (J - r ~ ta' where

l (I +k)sn(K/n) J21 - k Sn 2(K/n)

ta= - cn(K/n)dn(K/n) l+ksn 2(K/n}'

Proof From the above description of ZI/(z, r), we have

1/ I

Z~(z,r)-IIZI/(r)111=(Z1_1) Il (z-zy(z-Ct)(z-f3),
j= 2

(28)

(1.<f3<-I,

so that, after some manipulations making use of (27), Eq. (9) becomes

11--1

!Pn(z)\1-\PI 2 = (Z2 -1) Il (z - zy h(z),
j= 2

where h(z) is the quadratic polynomial (z-Ct)(z-fJ)+2t[z-(I+rxf3)/

(a+13)]. By Section 2, Pn(z)=Zn(z,p) iff !pl/(z)l:::;jPI or, equivalently,
h(z) ~ 0 for all z E [ -I, I]. For p E Cn we have to consider negative values
of t. The discriminant of h(z) is 4( t - t.,)(t - t h), ta < t h< 0, where

fa = [2(rx + f3)] 1 [(rx 2 - I )1i1 + (fJ1- 1)1/2]2,

th = [2(Ct + f3)] -I [(rx 2 -1 )1 11 _ (f31_I)li2Y

For f h :::; t ~ 0, it is easily verified that the roots of h(z) lie in [Ct, fJ] while,
for fa < t < t h , they are complex. Therefore, h(z) is nonnegative in [ -I, 1]
for fa<I:::;O. When 1=la, h(z) has a double root at A=(Ct+f3)j2-la
which, in view of (25) and (26), can be written as A= - [I - k sn 2(K/n)]/

[I +ksn2(K/n)]. Thus A is in (-1,0) for O<k< I. As hU)<O for I<fa,
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h(z) is nonnegative in [ -1,1] iff t ~ tao By (25) and (26), ta is still equal
to (28), as asserted. I

By virtue of (27), Eq. (5) of C r can be put in the form

r"_ (r - a)[a - r - (e,( + tJ)/2] = 0. (29)

Introducing aa(k) = r + fa' where r and fa are defined by (24) and (28), and
inserting a = aark) in (29) withe,( and tJ given by (25) and (26), yield the
positive value of T = Tark) on C"

k
_ (l+k)sn(K/n) l-ksn 2(K/n)

raj ) - k 2 •
cn(K/n) dn(K/n) I + sn (K/n)

(30)

The set {(aa(k), Talk)}, 0< k < I } defines the boundary curve separating
domains of the p-plane associated with pEA 2 and p E B. We list several
properties of this curve in

PROPERTY 1. Thefunctions aalk) and Talk) satisfv

(a) (aalk), Tjk)) -> «n -I) tan 2(n/2n), tan(n/2n)) as k ->0.

(b) (aa(k), TJk)) -> (0,1) as k -> 1.

(c) Iorn=2, (aa(k), Talk))=([(l-k)/(I+k)r i1
, 1),O<k<1.

(d) for n> 2, aalk) > 0, and T,,(k) < 1, 0< k < 1.

Proof Properties (a) and (b) are direct consequences of the degenerating
behavior of elliptic functions [4]. We prove Property (c) by putting [3,
Lemma2] sn(K/2)=(I+k') 1/1, cn(K/2)=[k'/(I+k')Y2, dn(K/2)=
(k')12, zn(K/2)=(I-k')/2, k'=(I_k 2)'2, in (24), (28), and (30). In
Property (d), we first show that, for n> 2, T a(k) < I, 0< k < 1. Indeed,
squaring the expression on the right of (30) and introducing the variable
y = sn"( K/n) E (0, 1), 0< k < 1, yield the function F(y) whose derivative can
be put in the form

F(y)= (I +k)2 (l-ky)[(l-ky)4+4k(l-k)2 y 2]
(I +ky)3 (1- y)2 (l-k 2y)"

Clearly, F(y) is positive in (0, I) for 0 < k < 1. Since y = sn 2(K/n), n> 2, is
smaller than sn 2(K/2) for 0 < k < I, it follows that T~(k) = F(sn 2(K/n)) <
F(sn 2(K/2)) = 1, O<k< I, as announced. Finally, if Property (d) is not
true for (1a(k), there is some k oE (0, I) such that (1,,(ko) = 0 together with
O<ra(ko)<1 and p,,=ir,,(ko)EA 1 . But, it was mentioned in the intro­
duction that p = it does not belong to A 2 for T E (0, 1). We easily check this
assertion by noting that, by (3), Z,.(I,p)/Z,,(-I,p)=(-I)" 1 if pEA 2,



326 DETAILLE AND THIRAN

whereas Z,,(z, ir), 0< r < 1, given by (I ) in which J = r 2 satisfies Z,.( 1, ir)1

Z,,( - !,ir) = ( - 1)" (I - r 2 + 2ir )/( I - r 2
- 2ir). I

Summing up, we conclude

COROLLARY I. Given p=a+ir, a>O, r~O, with r 2>(}'-a)(a-}'+
1+ }'n I),}' = n tan 2(n/2n), there exists k* E (0,1) such that p E C r -, where
r* is the corresponding value oj" r defined by (24). For r < I, if a < a,,(k*),
then P E B. Otherwise, pEA 2 and Z,,(z, p) is ohtained hy introducing the
extremal points z I' Z2' ... , Z" of Z,,(z, r*) in (3) and (4).

Prooj: The result is immediate if we show the existence of k* E (0, 1).
To this end, we denote by G(k), the left-hand side of (29) where r, :x, and
fi are given by (24), (25), and (26), respectively. First, we have G(O) = r 2

_

(}'-a)(a-}'+ 1 +}'n '»0 by hypothesis. Then, as k-> 1, r-> +00 and
Zl' Z2' ... , z" tend to the extremal points of T" ,(z). Thus, using (27), we
find r + (:x + fi)/2 = - 2:;'0 I Zi -+ °when k -+ I so that G(k) - -ar <0. By
continuity, G(k) vanishes at some k* lying in the open interval (0, 1), as
required. I

Unfortunately, the explicit values of all extremal points of the real
Zolotarev polynomial are not known in the elliptic case (see [3, bottom of
p. 25 J), except for n = 2 where z 1 and z 2 are simply - 1 and 1. When n = 2,
it is even possible to determine the explicit expression of Z,,(z, p) for p E B,
as is shown in the last theorem.

THEOREM 7. Let Z2(Z,p)=Z2+ pz -d, p=a+ir, a~O, r~O.

(a) I(r2~min{a,2a-a2}, then pEA"

d = [4 + (r*)2 + 2(2 - r*) p J/8

where

(b) If either r2~1, (a,r);6(l,l) or 2a-a2<r2<1, then pEA 2,
d=l, (z1,z2)=(-I, 1), and IIZ2(P)II=lpl.
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(c) Ifa<r 2 <1, then pEB,

d=2 1[(1 +r2)-ia(r-r- I )J,

with (zl,z2,zJ=(-I,-a,l)andIIZ2(p)II=2 l(r+r 1)lp[.

Proof Statements (a) and (b) are particular applications of Theorem 5
and Corollary I. We solve the third case characterized by three extremal
points zl=-I<Z2<Z3=1, by identifying IZ2(z,pW-IZ2(I,pW with
(Z2 - l)(z - Z2)2 to obtain the asserted values of d and Z2' I

Finally, the three domains A I' A 2, and B of the p-plane are exhibited in
Fig. 1 for several values of the degree n.

r
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B

A2

r
1.0

0.5
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B
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0.0 0.2 0.4 0.6 0.8 ,,- 0.0 0.1 0.2 0.3 0.4 0.5 ,,-
(0) n= 4 (b) n= 6

r r
1.0 1.0

A2 A2
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0.0 0.1 0.2 0.3
(d) n=10

640,i72,'3·7

FIG. I. Domains AI. A 2 • and B. (ajn=4; (bjn=6; (c)n=8; (djn= 10.
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