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We consider complex Zolotarev polynomials of degree n on [ —1, 1], i.e., monic
polynomials of degree n with the second coeflicient assigned to a given complex
number p, that have minimum Chebyshev norm on [ —1.1]. They can be charac-
terized either by n or by n + 1 extremal points. We show that those corresponding
to n extrema are closely related to real Zolotarev polynomials on { —1, 1], so that
we distinguish between a trigonometric case where an explicit expression is given
and the more complicated elliptic case. The classification of the parameters p that
lead to one of the above cases is provided. " 1993 Academic Press. Inc

1. INTRODUCTION AND NOTATIONS

Given an integer n>=2, neN, and a complex number p=g0+it,
(0, 7)€ R?, the Zolotarev polynomial Z,(z, p) on [ —1, 1] is the complex
polynomial of degree n whose first two coefficients are equal to 1 and p,
that deviates least from zero on [ —1, 1]. More precisely, its Chebyshev
norm {|Z,(p)| on [ -1, 1] satisfies

I1Z,(p)ll = min {!lpn Lpoz)=2 a2’ a,=1,
=0
CI,, | :P, (an 25 s a())EC" ) l}’

with |jp, || = max{|p,)l. ze [~ 1. 1]).

By symmetry, it suffices to consider ¢ =0 and t>0. Indeed, from
Z,z, p), a simple computation yields Z,(z, —p)=(—-1)"Z,(—z p)
Z Az, py=Z,(z, p) and, consequently, Z,(z, ~p)=(—-1)"Z,(—=z, p), where
the upper bar stands for complex conjugacy.

The problem originally stated and solved by Zolotarev refers to pe R,
1e., p=a [1-3,6]. As is discussed, for instance, by Carlson and Todd in
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their expository paper [3], there is a critical value y = n tan®[n/(2#n)] such
that the solution is expressed in terms of trigonometric functions for ¢ <y
and in terms of elliptic functions for o = 7.

Recently, for purely imaginary values of p, ie., p=it, an explicit
expression of Z,(z,it) has been obtained by Freund [5] when t<1
and by the authors [9] when 2 1. If 7,(z), k€ N, denotes the Chebyshev
polynomial of the first kind, ie., T,(z)=cos k3, z=cos 3, then

Zn(:’ I’T)=2|W"[T"(Z)‘FZI.TT" 1(:)—6Tn 2(‘:)]’ (1)

where d=1’fort<land d=1"for t> 1.

The object of the present work is to investigate Z,(z, p), p =0 + it, for
nonzero values of ¢ and 1.

By the well-established theory of uniform approximation by complex
polynomials, Z,(z, p) exists, is unique, and satisfies the following
characterization [7, 8].

THEOREM 1. The Zolotarev polynomial Z,(z, p) on [ —1,1] is charac-
terized by m extremal points z;e [—1,1],j=1,2, ..m, withn<m<2n—1,
such that

Z(zp)=¢,1Z,(p)l, le,l=1, j=12,.,m,

with

Y s;pa alz;)=0, 5;#0, sgns,; =g, alp, -, (2)

=1
where sgn s;=1s,/1s;|.

For the problem at hand, it is not hard to verify that Z,(z, p) has at
most n+ 1 extrema in [ — 1, 1 ]. Hence, the parameters p can be classified
in a set 4 for which m=n and in a set B for which m=n+ 1. For example,
p=oceAforall c =0 whereas p=itisin Afort>=1and in B for te (0, 1).
In Section 2, we show that, for any pe 4, Z,(z, p) is connected with real
Zolotarev polynomials. This leads us to distinguish between a trigono-
metric case for which an explicit expression of Z ,(z, g) is given in Section 3
and the more complicated elliptic case that is treated in Section 4.

2. RELATIONSHIP BETWEEN REAL AND COMPLEX
ZOLOTAREV POLYNOMIALS FOR pe A

When m = n, the coefficients s, in (2) are simply given by ¢/Q’'(z,) with
c#0 and Q(z)=T1;., (z—=z4) [7, 8] This yields &, =n sgn Q’(z;), where
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n = sgn ¢. Moreover, there holds an expression of Z,(z, p) in terms of its n
extremal points.

THEOREM 2. For pe A, Z,(z, p) is given by

Z(zp)=n1Z,(p)l 2 1Q () Q)= —z) + Q(=), (3)

j=1

with

nllZ.(p)l =<P+ )y 2,)/«"‘ 1) (4)
i=1 i=1

Proof. By (3), Z,(z, p) is a monic polynomial of degree » and. by (4),
its second coefficient is p. From (3), we easily find Z,z,, p)=
nsgn Q'(z) IIZ,(p)ll, as required. |}

In the sequel, we order the extremal points with increasing values, ie.,
5y <y o- <z, s0 that sgn Q'(z;)=(—-1)"", j=1,2, .., n To determine
them, we need the following result that is basic for the remainder of the
paper.

THEOREM 3. For p=oc+ite A, the extremal points =,z,,..,2, of
Z.(z, p) are those of the real Zolotarev polynomial Z,(z, r) where the real
parameter r is related to o and © by

r=o+r2“«“cc(0+ i Z,>. (5)

/ i=1

Proof. Setting n=¢", we find
Z(znp)=e(=1)" TN ZApW, =120,
or
gz )=(=1" " Z (o),  J=12,..n, (6)

where g,(z,)=%Rele “Z,z,, p)}. For zeR, ¢,(z) is a real polynomial of
degree n whose first two coefficients are cos $ and ocos $+ tsin S
Furthermore, for ze [—1, 1], we have |q,(z)|<|Z,(z, pH < [Z.(p)] so
that, by (6), ¢,(c) assumes its maximum value with alternating signs at
21y 22, s 2,. By virtue of the equioscillation theorem [2,6], ¢,(z)=
cos 3 Z,(z, r), where r=0g+ttan 3. In view of (4), we compute tan $=
t/(o+2.7_, z;) and we obtain (5). |

Note that, for given r, Eq. (5) defines a circle C, in the p-plane. For
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1=0, r is evidently equal to 0. For 1#0 and 60, ¥ z,->0 by
symmetry, so that r - o0 and z,, z,, .., z, tend to the extremal points of
T, .(z) as was proved in [9] for (1) when t> 1 and 6=1.

The above two theorems will serve for determining all Zolotarev
polynomials associated with p e 4. Given r > 0, we use the extremal points
1y Z2y e 2, Of Z,(z, r) to consider

p2)=P Z Q' ()1 " Q)= —z)) + Q(z), (7)

Ji=1
with
=<P+ ) :,»)fZ Q=) " (8)
i=1 fi=1

For all values of p on C, such that ||p, || =|P}, we obtain p,(z)=Z,(z, p).
In order to carry out this analysis, we first establish a technical lemma.

LEMMA L. With the above notations, the following holds for pe C,

n 1
P22 — |P|2=<’+ 2 5’./‘)

ji=1

{<0+Z ) . r)—HZ(rll]Hr—a)Q()}

F=1

9)
Proof. In view of (7) and (8), we have
PN = [(m 3 :,)~ +12] R¥(2)
+2<U+ ) 2,) R(z) Q(z)+ Q°(=), (10)

where

=[z 102)) ] S0 Qe E—z). ()

j=1 j=1

Now, Z,(z, r) is obtained by putting p=r in (3) and (4), so that

z<.~,r=<+z )R()+z<r+z )R()Q(HQ )

j=1 j=1
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Hence, making use of (5), we write (10) in the form
p.(2)? = (r+ il :,) B [<6+ i] :,-) Zi(z, r)+(r—o) Qz(:)] (12)
e -
Combining (4) in which p=r, (5) and (8) yields
|P|? = <r+ _il z,-)i ] (0’+ il -"’f) IZ, (),
j= j=
and, by subtraction with (12), the quoted result (9). |

We shall partition 4 in a set A, when r<y and a set 4, when r>7,
thereby defining the trigonometric and elliptic cases treated in the next two
sections.

3. THE TRIGONOMETRIC CASE

For r <y, the explicit expression of Z,(z, r) is {3, Theorem 1]
Z(z,r)=2"""04m Y T (x),  x=(+m Y(l+m ). (13)
Whence we prove

THEOREM 4. For O<r<yandp=o+iteC,, 020, t =0, p,(z) defined
in (7) and (8) is the Zolotarev polynomial Z,(z, p) and, consequently, pe A,

iff
o= (n—11k (14)
Proof. By virtue of (13), |Z,(r)|=2"""(1+m 'Y and z;=(1+rm ')
cos[(n—jymn/m]—rn", j=1,2,..,n, so that

i:,=1+r(n*'—l). (15)

i=1
On substituting these values in (9), we obtain after some computation

n—1

PP =1PP=T] (=)’ (= Dz —w),

j=1

where w= —1—2rn" '+ 2(r — o). Clearly, we have [p,(z)| <|P| for all
ze[—1, 1] iff w< —1 or, equivalently, iff the following inequality holds

c=(1—n"YHr. (16)



322 DETAILLE AND THIRAN

To show that (14) and (16} are equivalent, we insert (15) in (5) to obtain
the equation of C,

—(r—o)o—r+14+m ')=0. (17)

Rewriting (17) as t*=m '—[6—(1—n"")r][1 —r+ o], and assuming
(16) which implies ¢ =r—1 since n 'r<tan’[n/(2n)] <1, we conclude
that <m '<(n—1) 'o as required. Conversely, starting from
6> (n—1)r? where 1% is given by (17), we obtain [e—(1—n ')r]
[n(n—1)""—r+06]20 or 6=(1 —n ')r because n(n—1) '—r+oz
n{(n—1) '—tan’[x/(2n)]} =0. }

We conclude by stating

THEOREM 5. Let p=a+it, 620, 120, such that 1> <(y —a)lo—7y+
T+ '), y=ntan?[n/2n)]. If t*>a(n—1)", then peB For
v’<o{n—1) ' peA,, and Z (z, p) is explicitly given by

Z,,(Z,p)—':ZI Il(1+r*n 1)" '{(1+r*n’])T"(x)
+(p_r*)[Un ](x)——Un/Z(x)]}’ (18)

where x=(1+r*n 'Y '(c+r*n ') and, for keN, U,(x) denotes the
Chebyshev polynomial of the second kind, ie., Ug(x)=sin[(k+1)3]/sin 3,
x=cosd. The real constant r* in (18) is

r*=c+[2(n—1)] '(e+n—nv'?) (19)

2

withv=(n 'o+1)—4(1—n YHri

Proof. Given ¢ and t, the left-hand side of (17) is a quadratic polyno-
mial in r, denoted by g(r). As g(0)=1t>+0’+06>0 and g(;)<0 by
hypothesis, g(r) vanishes at some r* e [0, y] so that pe C,.. By virtue of
Theorem 4, p is in B for t?>¢(n—1) ' and in A, for t?’<a(n—1) " If
g(y)<0, as g(r)— +x for r - + o0, r* is the smallest root of g(r) given
by (19). If g(3)=0, ie., r*=1y, the second root is —y+(n—1) "n[1+
(2—n"'}a] which is greater than y for pe 4,, ie., for ¢ satisfying (16).
Hence r* is also given by (19).

For ped,, Z,(z, p)is

Z,.(Z,p):<l)+ > 2,-) R(z)+Q(2), (20)

i=1

where Q(z)=TT4_, (z —z4), R(z) is defined in (11) and =z, z,, .., z, are the
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extremal points of Z,(z, r*)=2"""(14r*n """ T (x), x=(1+r*n"") !
(z+r*n ). Now, Z,(z, r*) is also given by

Z,(z, r*)=<r*+ Z :,) R(z)+ Q(z). (21)

n=1

An easy calculation yields
Q(z)=2" "(I+r*n ")'n 'T(x)(x—1) (22)
and, by (21),
Rz)=2"""(1+r*n ')y '[Tfx)—n""(x~1) T,(x)] (23)

On substituting (22) and (23) in (20) and performing some arrangements
based on the trigonometric definition of Chebyshev polynomials, we obtain

(18). 1

4. THE ErrLirTiC CASE

We shall describe Z (z, r), r>17, in terms of elliptic functions with the
notations of Carlson and Todd [3], which are based on those used in the
book of Whittaker and Watson [10]. When r>1y, Z,(z, r) is given by
[1, Theorem 2]

Z, ) =1Z,) T,[(X+ X 1)/2],
where
X= -9, [{(mu/2K) — (/2n) ]/}, [(mu/2K) + (n/2n)]

and

IZ(r) =2" "{8,8:/[3x(n/2n) §5(n/2n) ]}
such that z is related to u by

z= —[sn?u+sn*(K/n)1/[sn® u—sn*(K/n)].
The modulus & of the elliptic functions is the unique solution in (0, 1) of

r=n{2sn(K/n){cn(K/n)dn(K/n)] " {[sn(2K/n)] ' —zn(K/n)} — 1 }.
(24)

In addition to the extremal points -, = -l <z,< -.- <z, =1, there are
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two points a < f < — 1 at which |Z (z, r)| takes on the value | Z,(r)}{. They
are given by
a=[sn*(K/n)+1]/[sn’(K/n)—1], (25)
B=[kIsn*(K/n)+ 1]/[k*sn*(K/n)—1], (26)

and they satisly the relation
2 Na+ P+ Y z,+r=0. (27)

Now we prove

THEOREM 6. For r>y and p=oc+iteC,, 620, 120, p,(z) defined in
(7) and (8) is the Zolotarev polynomial Z,(z, p) and, consequently, p€ A,,
Hft=0—r=1t,, where

_ [ (U +k)sn(K/n) :Iz 1 —ksn*(K/n)
“ [cn(K/n) dn(K/n )| 1+ksn?(K/n)

(28)

Proof. From the above description of Z,(z, r), we have
n- 1

2o —NZ,nP=C =D J] =z (z—a)z—B), a<f<—1,
j=2

so that, after some manipulations making use of (27), Eq. {(9) becomes
n-—1
PN = 1PP=(—1) [] =2y h(2),
i=2

where Ah(z) 1s the quadratic polynomial (z—a)(z—p)+21[z— (1 +af)/
(x+ B)]). By Section2, p,(z)=2Z,(z, p) iff |p,(z)] <|P| or, equivalently,
h(z)=0forall ze[—1,1]. For pe C,, we have to consider negative values
of 1. The discriminant of A(z) is 4(t —t,)(t —¢,,), 1, <1, <0, where

,=[20+p)] =D+ (B = 1)2T
=120+ B)] 7 [ =)= (= 1))

For 1, <t<0, it is easily verified that the roots of A(z) lie in [«, ] while,
for 1, <t <1,, they are complex. Therefore, h(z) is nonnegative in [ —1, 1]
for 1,<1<0. When r=1,, h(z) has a double root at A={a+f)2—1,
which, in view of (25) and (26), can be written as A= — [ 1 —k sn*(K/n)]/
[1+ksn*K/n)]. Thus Aisin (—1,0) for O<k < 1. As H{2)<O0 fort<1t,,
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h(z) is nonnegative in [ —1, 17 iff 1=7,. By (25) and (26), 1, is still equal
to (28), as asserted. |
By virtue of (27), Eq. (5) of C, can be put in the form
P~ (r—o)o—r—(a+$)2]=0. (29)

Introducing ¢ ,(k) =r +t,, where r and 1, are defined by (24) and (28), and
inserting  =a,(k) in (29) with « and f given by (25) and (26), yield the
positive value of t=1,(k) on C,,

_ (1 +k)sn(K/n) 1 —ksn*(K/n)
~en(K/n) dn(K/n) | + k sn*(K/n)

(k) (30)

The set {(o,(k), T,(k)}, 0<k <1} defines the boundary curve separating
domains of the p-plane associated with pe 4, and pe B. We list several
properties of this curve in

PROPERTY 1. The functions o (k) and t (k) satisfy

(a} (o.(k), t,(k))— ((n—1)tan’(n/2n), tan(n/2n)) as k - 0.

(b) (0,(k), 1,(k))~> (0, 1)as k— 1.

(c) for n=2, (o 0k), 1,(k))=([(1 =k)/(1 +k)]"% 1), O<k < 1.
(d) forn>2,0,k)>0,and 7 (k)<1, 0<k<]1.

Proof. Properties (a) and (b) are direct consequences of the degenerating
behavior of elliptic functions [4]. We prove Property (c) by putting [3,
Lemma 2] sn(K/2)=(1+k") "2 en(K/2)=[k'/(1 +k)]1"2 dn(K/2)=
(k)2 n(K/2)=(1—=k')2, k'=(1—=k)"2 in (24), (28), and (30). In
Property (d), we first show that, for n>2, 7,(k)<1, 0 <k <1. Indeed,
squaring the expression on the right of (30) and introducing the variable
v=sn*(K/n)e (0, 1), 0 <k <1, yield the function F(y) whose derivative can
be put in the form

(1+K)° (1—ky)[(1 —ky)* +4k(1 —k)* y*]
(1+ky)* (1=y)* (1 —k%y)?

Fi(y)=

Clearly, F’(y) is positive in (0, 1) for 0 <k < 1. Since y =sn’(K/n), n> 2, is
smaller than sn’(K/2) for 0<k <1, it follows that t2(k)= F(sn’(K/n)) <
F(sn)(K/2))=1, O0<k <1, as announced. Finally, if Property (d) is not
true for o (k), there is some kye(0, 1) such that ¢ ,(k,) =0 together with
O<t,lky)<1 and p,=it,(ko)€ A,. But, it was mentioned in the intro-
duction that p = it does not belong to 4, for € (0, 1). We easily check this
assertion by noting that, by (3), Z,(1, p)/Z.(—=1,p)=(—=1)" 'il pe A4,,
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whereas Z,(z, it), 0 <t <1, given by (1) in which é = t? satisfies Z (1, it)/
Z(—Lity=(=1yY (1 =2+ 2it)/(1 — 1> = 2it). |

Summing up, we conclude

COROLLARY 1. Given p=o+it, 6>0, 120, with 1> (y—o)e—7+
140 Y, y=ntan’(n/2n), there exists k* e (0, 1) such that pe C,., where
r* is the corresponding value of r defined by (24). For 1 <1, if 0 <o (k*),
then pe B. Otherwise, pe A, and Z,(z, p) is obtained by introducing the
extremal points =, =5, .., 2, of Z (=, r*) in (3) and (4).

Proof. The result i1s immediate if we show the existence of k*¢e (0, 1).
To this end, we denote by G(k), the left-hand side of (29) where r, «, and
B are given by (24), (25), and (26), respectively. First, we have G(0) =1 —
(y—o)o~7y+1+yn ')y>0 by hypothesis. Then, as k— 1, r - + o0 and
Iy Zas o 2, tend to the extremal points of 7, ((z). Thus, using (27), we
find r+ (a4 f)/2=—-37_, z,—0 when k — 1 so that G(k)~ —or<0. By
continuity, G(k) vanishes at some k* lying in the open interval (0, 1), as
required. |

Unfortunately, the explicit values of all extremal points of the real
Zolotarev polynomial are not known in the elliptic case (see [3, bottom of
p. 25]), except for n =2 where z, and z, are simply —1 and 1. When n=2,
it is even possible to determine the explicit expression of Z,(z, p) for pe B,
as is shown in the last theorem.

THEOREM 7. Let Zy(z,p)=z +pz—d, p=0c+it, 0 20, 120.

(a) If t*<minia, 26—}, then pe A,
d=[4+(r* V¥ +2(2—r*) p]/8

with (z,,2,)=(—=2 'r*, 1) and

27142 'r*)?

1Z:(p)ll = {] [0+ 1 _24,*)]2}1 3a

where

r*=2 “{(2+30)—[(c +2)*—877]"*.

(by If either 1° =1, (o, 1)#(1,1) or 26—’ <1’ <1, then pe A,,
d= 1, (:15 :2):(‘1~ I’v and “Z'Z(p)“ = Ip'
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(¢) Ifo<t’<1, then pe B,
d=2 '[(1+1t})—ioc(t—1 1],

with (zy, 25, 23) = (=1, —a, D) and | Z,(p)| =2 "(t+1 ") pl.

Proof. Statements (a) and (b) are particular applications of Theorem 5
and Corollary 1. We solve the third case characterized by three extremal
points z,= —1<z,<z;=1, by identifying |Z,(z, p)|>—|Z:(1, p)|* with
(z> = 1)(z — z,)* to obtain the asserted values of 4 and z,. |

Finally, the three domains A4,, 4,, and B of the p-plane are exhibited in
Fig. | for several values of the degree n.

o
10 10
A2 A2
05 B 05 B
AT A
0.0 02 04 06 08 v 00 01~ 02 03 04 05 %
(@) n= 4 (b) n= 6
4 1
r r
1.0 10
A2 A2
05 B 05 B
Al Al
00 0.1 0.2 0.3 04 v 00 0.1 02 03 v
(¢) n= 8 (d) n=10

FiG. 1. Domains 4,, 4>, and B. (a)n=4; (bln=6; (c}n=8; (d)n=10.

640,72/3-7



328 DETAILLE AND THIRAN

1

2.

3.

REFERENCES

. N. I. AcHieser, Uber einige Funktionen, die in gegebenen Intervallen am wenigsten von

Null abweichen, Bull. Soc. Phys. Math. Kazan Ser. 111 3 (1929), 1-69.

N. I. ACHIESER, “Vorlesungen iiber Approximationstheorie,” Akademie-Verlag, Berlin,

1967.

B. C. CARLSON aND J. Toop, Zolotarev's first problem—The best approximation by

polynomials of degree <n—2 to x"—nox" 'in [—1, 1], Aequationes Math. 26 (1983),

1-33.

. B. C. CArRLsON aND J. Topp, The degenerating behavior of elliptic functions, STAM J.
Numer. Anal. 20 (1983), 1120-1129.

. R. FREUND, One some approximation problems {or complex polynomials, Constr. Approx.
4 (1988), 111-121.

. G. MEINARDUS, “Approximation of Functions: Theory and Numerical Methods,”
Springer-Verlag, Berlin, 1967.

. T. J. RivLiN, Best uniform approximation by polynomials in the complex plane, in
“Approximation Theory Il (E. W. Cheney, Ed.), pp. 75-86, Academic Press, New York,
1980.

. V. I. SMIRNOV aAND N. A. LeBepEv, “Functions of a Complex Variable: Constructive

Theory,” MIT Press, Cambridge, MA, 1968.

J. P. THiran anp C. Dertaitt, On two complex Zolotarev’s first problems, Constr.

Approx. 7 (1991), 441-451.

. E. T. WHITTAKER AND G. N. WaTsoN, “A Course of Modern Analysis,” Cambridge Univ.
Press, London, 1962,



