Complex Zolotarev Polynomials on the Real Interval [-1,1]

C. Detaille and J.-P. Thiran
Department of Mathematics, Facultés Universitaires de Namur, B-5000 Nantur, Belgium

Communicated by G. Meinardus
Received April 8, 1991; accepted December 6, 1991

Abstract

We consider complex Zolotarev polynomials of degree n on $[-1,1]$, i.e., monic polynomials of degree n with the second coefficient assigned to a given complex number ρ, that have minimum Chebyshev norm on $[-1,1]$. They can be characterized either by n or by $n+1$ extremal points. We show that those corresponding to n extrema are closely related to real Zolotarev polynomials on $[-1,1]$, so that we distinguish between a trigonometric case where an explicit expression is given and the more complicated elliplic case. The classification of the parameters ρ that lead to one of the above cases is provided. 1993 Academic Press. Inc.

1. Introduction and Notations

Given an integer $n \geqslant 2, n \in \mathbb{N}$, and a complex number $\rho=\sigma+i \tau$, $(\sigma, \tau) \in \mathbb{R}^{2}$, the Zolotarev polynomial $Z_{n}(z, \rho)$ on $[-1,1]$ is the complex polynomial of degree n whose first two coefficients are equal to 1 and ρ, that deviates least from zero on $[-1,1]$. More precisely, its Chebyshev norm $\left\|Z_{n}(\rho)\right\|$ on $[-1,1]$ satisfies

$$
\begin{aligned}
\left\|Z_{n}(\rho)\right\|=\min \{ & \left\|p_{n}\right\|, p_{n}(z)=\sum_{j=0}^{n} a_{j} z^{j}, a_{n}=1 \\
& \left.a_{n} \quad 1=\rho,\left(a_{n} \quad, \ldots, a_{0}\right) \in \mathbb{C}^{n-1}\right\}
\end{aligned}
$$

with $\left\|p_{n}\right\|=\max \left\{\left|p_{n}(z)\right|, z \in[-1,1]\right\}$.
By symmetry, it suffices to consider $\sigma \geqslant 0$ and $\tau \geqslant 0$. Indeed, from $Z_{n}(z, \rho)$, a simple computation yields $Z_{n}(z,-\rho)=(-1)^{n} Z_{n}(-z, \rho)$, $Z_{n}(z, \bar{\rho})=\overline{Z_{n}(z, \rho)}$ and, consequently, $Z_{n}(z,-\bar{\rho})=(-1)^{n} \overline{Z_{n}(-z, \rho)}$, where the upper bar stands for complex conjugacy.

The problem originally stated and solved by Zolotarev refers to $\rho \in \mathbb{R}$, i.e., $\rho=\sigma[1-3,6]$. As is discussed, for instance, by Carlson and Todd in
their expository paper [3], there is a critical value $\gamma=n \tan ^{2}[\pi /(2 n)]$ such that the solution is expressed in terms of trigonometric functions for $\sigma \leqslant \gamma$ and in terms of elliptic functions for $\sigma \geqslant \gamma$.

Recently, for purely imaginary values of ρ, i.e., $\rho=i \tau$, an explicit expression of $Z_{n}(z, i \tau)$ has been obtained by Freund [5] when $\tau \leqslant 1$ and by the authors [9] when $\tau \geqslant 1$. If $T_{k}(z), k \in \mathbb{N}$, denotes the Chebyshev polynomial of the first kind, i.e., $T_{k}(z)=\cos k \vartheta, z=\cos \vartheta$, then

$$
\begin{equation*}
Z_{n}(z, i \tau)=2^{1-n}\left[T_{n}(z)+2 i \tau T_{n} \quad(z)-\delta T_{n \cdot 2}(z)\right], \tag{1}
\end{equation*}
$$

where $\delta=\tau^{2}$ for $\tau \leqslant 1$ and $\delta=1$ for $\tau \geqslant 1$.
The object of the present work is to investigate $Z_{n}(z, \rho), \rho=\sigma+i \tau$, for nonzero values of σ and τ.

By the well-established theory of uniform approximation by complex polynomials, $Z_{n}(z, \rho)$ exists, is unique, and satisfies the following characterization $[7,8]$.

Theorem 1. The Zolotarev polynomial $Z_{n}(z, \rho)$ on $[-1,1]$ is characterized by m extremal points $z_{j} \in[-1,1], j=1,2, \ldots, m$, with $n \leqslant m \leqslant 2 n-1$, such that

$$
Z_{n}\left(z_{j}, \rho\right)=\varepsilon_{j}\left\|Z_{n}(\rho)\right\|, \quad\left|\varepsilon_{j}\right|=1, \quad j=1,2, \ldots, m
$$

with

$$
\begin{equation*}
\sum_{i=1}^{m} s_{j} p_{n-2}\left(z_{j}\right)=0, \quad s_{j} \neq 0, \quad \operatorname{sgn} s_{j}=\overline{\varepsilon_{j}}, \quad \text { all } p_{n} \quad 2, \tag{2}
\end{equation*}
$$

where $\operatorname{sgn} s_{j}=s_{j} /\left|s_{j}\right|$.
For the problem at hand, it is not hard to verify that $Z_{n}(z, \rho)$ has at most $n+1$ extrema in $[-1,1]$. Hence, the parameters ρ can be classified in a set A for which $m=n$ and in a set B for which $m=n+1$. For example, $\rho=\sigma \in A$ for all $\sigma \geqslant 0$ whereas $\rho=i \tau$ is in A for $\tau \geqslant 1$ and in B for $\tau \in(0,1)$. In Section 2, we show that, for any $\rho \in A, Z_{n}(z, \rho)$ is connected with real Zolotarev polynomials. This leads us to distinguish between a trigonometric case for which an explicit expression of $Z_{n}(z, \rho)$ is given in Section 3 and the more complicated elliptic case that is treated in Section 4.

2. Relationship between Real and Complex Zolotarev Polynomials for $\rho \in A$

When $m=n$, the coefficients s_{j} in (2) are simply given by $c / Q^{\prime}\left(z_{j}\right)$ with $c \neq 0$ and $Q(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)[7,8]$. This yields $\varepsilon_{i}=\eta \operatorname{sgn} Q^{\prime}\left(z_{j}\right)$, where
$\eta=\operatorname{sgn} \bar{c}$. Moreover, there holds an expression of $Z_{n}(z, \rho)$ in terms of its n extremal points.

Theorem 2. For $\rho \in A, Z_{n}(z, \rho)$ is given by

$$
\begin{equation*}
Z_{n}(z, \rho)=\eta\left\|Z_{n}(\rho)\right\| \sum_{j=1}^{n}\left|Q^{\prime}\left(z_{j}\right)\right|^{-1} Q(z) /\left(z-z_{j}\right)+Q(z), \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta\left\|Z_{n}(\rho)\right\|=\left(\rho+\sum_{i=1}^{n} z_{j}\right) / \sum_{i=1}^{n}\left|Q^{\prime}\left(z_{i}\right)\right| \tag{4}
\end{equation*}
$$

Proof. By (3), $Z_{n}(z, \rho)$ is a monic polynomial of degree n and, by (4), its second coefficient is ρ. From (3), we easily find $Z_{n}\left(Z_{j}, \rho\right)=$ $\eta \operatorname{sgn} Q^{\prime}\left(z_{j}\right)\left\|Z_{n}(\rho)\right\|$, as required.

In the sequel, we order the extremal points with increasing values, i.e., $z_{1}<z_{2}<\cdots<z_{n}$, so that $\operatorname{sgn} Q^{\prime}\left(z_{j}\right)=(-1)^{n-1}, j=1,2, \ldots, n$. To determine them, we need the following result that is basic for the remainder of the paper.

Theorem 3. For $\rho=\sigma+i \tau \in A$, the extremal points $z_{1}, z_{2}, \ldots, z_{n}$ of $Z_{n}(z, \rho)$ are those of the real Zolotarev polynomial $Z_{n}(z, r)$ where the real parameter r is related to σ and τ by

$$
\begin{equation*}
r=\sigma+\tau^{2} /\left(\sigma+\sum_{j=1}^{n} z_{j}\right) . \tag{5}
\end{equation*}
$$

Proof. Setting $\eta=e^{i \xi}$, we find

$$
Z_{n}\left(z_{i}, \rho\right)=e^{i \neq}(-1)^{n} \cdot\left\|Z_{n}(\rho)\right\|, \quad j=1,2, \ldots, n,
$$

or

$$
\begin{equation*}
q_{n}\left(z_{j}\right)=(-1)^{n ;}\left\|Z_{n}(\rho)\right\|, \quad j=1,2, \ldots, n \tag{6}
\end{equation*}
$$

where $q_{n}\left(z_{j}\right)=\mathscr{R} e\left\{e^{\quad n} Z_{n}\left(z_{i}, \rho\right)\right\}$. For $z \in \mathbb{R}, q_{n}(z)$ is a real polynomial of degree n whose first two coefficients are $\cos \vartheta$ and $\sigma \cos \vartheta+\tau \sin \theta$. Furthermore, for $z \in[-1,1]$, we have $\left|q_{n}(z)\right| \leqslant\left|Z_{n}(z, \rho)\right| \leqslant\left\|Z_{n}(\rho)\right\|$ so that, by (6), $q_{n}(z)$ assumes its maximum value with alternating signs at $z_{1}, z_{2}, \ldots, z_{n}$. By virtue of the equioscillation theorem $[2,6], q_{n}(z)=$ $\cos \vartheta Z_{n}(z, r)$, where $r=\sigma+\tau \tan \vartheta$. In view of (4), we compute $\tan \vartheta=$ $\tau /\left(\sigma+\sum_{j=1}^{n} z_{j}\right)$ and we obtain (5).

Note that, for given r, Eq. (5) defines a circle C_{r} in the ρ-plane. For
$\tau=0, r$ is evidently equal to σ. For $\tau \neq 0$ and $\sigma \rightarrow 0, \sum_{j=1}^{n} z_{j} \rightarrow 0$ by symmetry, so that $r \rightarrow \infty$ and $z_{1}, z_{2}, \ldots, z_{n}$ tend to the extremal points of $T_{n}{ }_{1}(z)$ as was proved in [9] for (1) when $\tau \geqslant 1$ and $\delta=1$.

The above two theorems will serve for determining all Zolotarev polynomials associated with $\rho \in A$. Given $r>0$, we use the extremal points $z_{1}, z_{2}, \ldots, z_{n}$ of $Z_{n}(z, r)$ to consider

$$
\begin{equation*}
p_{n}(z)=P \sum_{j=1}^{n}\left|Q^{\prime}\left(z_{j}\right)\right|^{\prime} Q(z) /\left(z-z_{j}\right)+Q(z) \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
P=\left(\rho+\sum_{j=1}^{n} z_{j}\right) / \sum_{j=1}^{n}\left|Q^{\prime}\left(z_{j}\right)\right|^{-1} . \tag{8}
\end{equation*}
$$

For all values of ρ on C_{r} such that $\left\|p_{n}\right\|=|P|$, we obtain $p_{n}(z)=Z_{n}(z, \rho)$.
In order to carry out this analysis, we first establish a technical lemma.

Lemma 1. With the above notations, the following holds for $\rho \in C_{r}$

$$
\begin{align*}
\left|p_{n}(z)\right|^{2}-|P|^{2}= & \left(r+\sum_{j=1}^{n} z_{j}\right)^{1} \\
& \times\left\{\left(\sigma+\sum_{j=1}^{n} z_{j}\right)\left[Z_{n}^{2}(z, r)-\left\|Z_{n}(r)\right\|^{2}\right]+(r-\sigma) Q^{2}(z)\right\} \tag{9}
\end{align*}
$$

Proof. In view of (7) and (8), we have

$$
\begin{align*}
\left|p_{n}(z)\right|^{2}= & {\left[\left(\sigma+\sum_{j=1}^{n} z_{j}\right)^{2}+\tau^{2}\right] R^{2}(z) } \\
& +2\left(\sigma+\sum_{j=1}^{n} z_{j}\right) R(z) Q(z)+Q^{2}(z) \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
R(z)=\left[\sum_{i=1}^{n}\left|Q^{\prime}\left(z_{j}\right)\right|^{-1}\right]^{1} \sum_{j=1}^{n}\left|Q^{\prime}\left(z_{j}\right)\right|^{-1} Q(z) /\left(z-z_{j}\right) . \tag{11}
\end{equation*}
$$

Now, $Z_{n}(z, r)$ is obtained by putting $\rho=r$ in (3) and (4), so that

$$
Z_{n}^{2}(z, r)=\left(r+\sum_{j=1}^{n} z_{j}\right)^{2} R^{2}(z)+2\left(r+\sum_{j=1}^{n} z_{j}\right) R(z) Q(z)+Q^{2}(z) .
$$

Hence, making use of (5), we write (10) in the form

$$
\begin{equation*}
\left|p_{n}(z)\right|^{2}=\left(r+\sum_{j=1}^{n} z_{j}\right)^{-1}\left[\left(\sigma+\sum_{j=1}^{n} z_{j}\right) Z_{n}^{2}(z, r)+(r-\sigma) Q^{2}(z)\right] . \tag{12}
\end{equation*}
$$

Combining (4) in which $\rho=r$, (5) and (8) yields

$$
|P|^{2}=\left(r+\sum_{j=1}^{n} z_{j}\right)^{-1}\left(\sigma+\sum_{j=1}^{n} z_{j}\right)\left\|Z_{n}(r)\right\|^{2}
$$

and, by subtraction with (12), the quoted result (9).
We shall partition A in a set A_{1} when $r \leqslant \gamma$ and a set A_{2} when $r>\gamma$, thereby defining the trigonometric and elliptic cases treated in the next two sections.

3. The Trigonometric Case

For $r \leqslant \gamma$, the explicit expression of $Z_{n}(z, r)$ is [3, Theorem 1]

$$
\begin{equation*}
Z_{n}(z, r)=2^{1-n}\left(1+r n^{-1}\right)^{n} T_{n}(x), \quad x=\left(z+r n^{-1}\right) /\left(1+r n^{1}\right) \tag{13}
\end{equation*}
$$

Whence we prove
Theorem 4. For $0<r \leqslant \gamma$ and $\rho=\sigma+i \tau \in C_{r}, \sigma \geqslant 0, \tau \geqslant 0, p_{n}(z)$ defined in (7) and (8) is the Zolotarev polynomial $Z_{n}(z, \rho)$ and, consequently, $\rho \in A_{1}$, iff

$$
\begin{equation*}
\sigma \geqslant(n-1) \tau^{2} \tag{14}
\end{equation*}
$$

Proof. By virtue of (13), $\left\|Z_{n}(r)\right\|=2^{1-n}\left(1+r n^{1}\right)^{n}$ and $z_{j}=\left(1+r n^{1}\right)$ $\cos [(n-j) \pi / n]-r n^{-1}, j=1,2, \ldots, n$, so that

$$
\begin{equation*}
\sum_{j=1}^{n} z_{j}=1+r\left(n^{-1}-1\right) \tag{15}
\end{equation*}
$$

On substituting these values in (9), we obtain after some computation

$$
\left|p_{n}(z)\right|^{2}-|P|^{2}=\prod_{j=1}^{n-1}\left(z-z_{j}\right)^{2}(z-1)(z-\omega)
$$

where $\omega=-1-2 m n^{-1}+2(r-\sigma)$. Clearly, we have $\left|p_{n}(z)\right| \leqslant|P|$ for all $z \in[-1,1]$ iff $\omega \leqslant-1$ or, equivalently, iff the following inequality holds

$$
\begin{equation*}
\sigma \geqslant\left(1-n^{-1}\right) r . \tag{16}
\end{equation*}
$$

To show that (14) and (16) are equivalent, we insert (15) in (5) to obtain the equation of C_{r}

$$
\begin{equation*}
\tau^{2}-(r-\sigma)\left(\sigma-r+1+r n^{1}\right)=0 \tag{17}
\end{equation*}
$$

Rewriting (17) as $\tau^{2}=r n^{-1}-\left[\sigma-\left(1-n^{-1}\right) r\right][1-r+\sigma]$, and assuming (16) which implies $\sigma \geqslant r-1$ since $n^{1} r \leqslant \tan ^{2}[\pi /(2 n)] \leqslant 1$, we conclude that $\tau^{2} \leqslant r n^{-1} \leqslant(n-1)^{1} \sigma$ as required. Conversely, starting from $\sigma \geqslant(n-1) \tau^{2}$ where τ^{2} is given by (17), we obtain $\left[\sigma-\left(1-n^{1}\right) r\right]$ $\left[n(n-1)^{-1}-r+\sigma\right] \geqslant 0$ or $\sigma \geqslant\left(1-n^{1}\right) r$ because $n(n-1)^{1}-r+\sigma \geqslant$ $n\left\{(n-1)^{1}-\tan ^{2}[\pi /(2 n)]\right\} \geqslant 0$.

We conclude by stating

Theorem 5. Let $\rho=\sigma+i \tau, \sigma \geqslant 0, \tau \geqslant 0$, such that $\tau^{2} \leqslant(\gamma-\sigma)(\sigma-\gamma+$ $\left.1+\gamma n^{1}\right), \gamma=n \tan ^{2}[\pi /(2 n)]$. If $\tau^{2}>\sigma(n-1)^{1}$, then $\rho \in B$. For $\tau^{2} \leqslant \sigma(n-1)^{1}, \rho \in A_{1}$, and $Z_{n}(z, \rho)$ is explicitly given by

$$
\begin{align*}
Z_{n}(z, \rho)= & 2^{\prime} \cdot\left(1+r^{*} n{ }^{1}\right)^{n} \quad\left\{\left(1+r^{*} n^{-1}\right) T_{n}(x)\right. \\
& \left.+\left(\rho-r^{*}\right)\left[U_{n-1}(x)-U_{n-2}(x)\right]\right\} \tag{18}
\end{align*}
$$

where $x=\left(1+r^{*} n^{1}\right)^{1}\left(z+r^{*} n{ }^{1}\right)$ and, for $k \in \mathbb{N}, U_{k}(x)$ denotes the Chebyshev polynomial of the second kind, i.e., $U_{k}(x)=\sin [(k+1) \vartheta] / \sin \vartheta$, $x=\cos \%$. The real constant r^{*} in (18) is

$$
\begin{equation*}
r^{*}=\sigma+[2(n-1)]^{1}\left(\sigma+n-n v^{1 / 2}\right) \tag{19}
\end{equation*}
$$

with $v=\left(n^{1} \sigma+1\right)^{2}-4\left(1-n^{1}\right) \tau^{2}$.
Proof. Given σ and τ, the left-hand side of (17) is a quadratic polynomial in r, denoted by $g(r)$. As $g(0)=\tau^{2}+\sigma^{2}+\sigma \geqslant 0$ and $g(\gamma) \leqslant 0$ by hypothesis, $g(r)$ vanishes at some $r^{*} \in[0, \gamma]$ so that $\rho \in C_{r^{*}}$. By virtue of Theorem 4, ρ is in B for $\tau^{2}>\sigma(n-1)^{1}$ and in A_{1} for $\tau^{2} \leqslant \sigma(n-1)^{1}$. If $g(\gamma)<0$, as $g(r) \rightarrow+\infty$ for $r \rightarrow+\infty, r^{*}$ is the smallest root of $g(r)$ given by (19). If $g(\gamma)=0$, i.e., $r^{*}=\gamma$, the second root is $-\gamma+(n-1)^{1} n[1+$ $\left.\left(2-n^{-1}\right) \sigma\right]$ which is greater than γ for $\rho \in A_{1}$, i.e., for σ satisfying (16). Hence r^{*} is also given by (19).

For $\rho \in A_{1}, Z_{n}(z, \rho)$ is

$$
\begin{equation*}
Z_{n}(z, \rho)=\left(\rho+\sum_{j=1}^{n} z_{j}\right) R(z)+Q(z) \tag{20}
\end{equation*}
$$

where $Q(z)=\prod_{k=1}^{n}\left(z-z_{k}\right), R(z)$ is defined in (11) and $z_{1}, z_{2}, \ldots, z_{n}$ are the
extremal points of $Z_{n}\left(z, r^{*}\right)=2^{1-n}\left(1+r^{*} n^{-1}\right)^{n} T_{n}(x), x=\left(1+r^{*} n^{-1}\right)^{-1}$ $\left(z+r^{*} n^{1}\right)$. Now, $Z_{n}\left(z, r^{*}\right)$ is also given by

$$
\begin{equation*}
Z_{n}\left(z, r^{*}\right)=\left(r^{*}+\sum_{n=1}^{n} z_{j}\right) R(z)+Q(z) . \tag{21}
\end{equation*}
$$

An easy calculation yields

$$
\begin{equation*}
Q(z)=2^{\prime} \quad "\left(1+r^{*} n^{-1}\right)^{\prime \prime} n^{1} T_{n}^{\prime}(x)(x-1) \tag{22}
\end{equation*}
$$

and, by (21),

$$
\begin{equation*}
R(z)=2^{1-n}\left(1+r^{*} n^{1}\right)^{n} \quad 1\left[T_{n}(x)-n^{-1}(x-1) T_{n}^{\prime}(x)\right] . \tag{23}
\end{equation*}
$$

On substituting (22) and (23) in (20) and performing some arrangements based on the trigonometric definition of Chebyshev polynomials, we obtain (18).

4. The Elliptic Case

We shall describe $Z_{n}(z, r), r>\gamma$, in terms of elliptic functions with the notations of Carlson and Todd [3], which are based on those used in the book of Whittaker and Watson [10]. When $r>\gamma, Z_{n}(z, r)$ is given by [1, Theorem 2]

$$
Z_{n}(z, r)=\left\|Z_{n}(r)\right\| T_{n}\left[\left(X+X^{-1}\right) / 2\right]
$$

where

$$
X=-\vartheta_{1}[(\pi u / 2 K)-(\pi / 2 n)] / \vartheta_{1}[(\pi u / 2 K)+(\pi / 2 n)]
$$

and

$$
\left\|Z_{n}(r)\right\|=2^{\prime} \quad n\left\{\vartheta_{2} \vartheta_{3} /\left[\vartheta_{2}(\pi / 2 n) \vartheta_{3}(\pi / 2 n)\right]\right\}^{2 n}
$$

such that z is related to u by

$$
z=-\left[\operatorname{sn}^{2} u+\operatorname{sn}^{2}(K / n)\right] /\left[\operatorname{sn}^{2} u-\operatorname{sn}^{2}(K / n)\right] .
$$

The modulus k of the elliptic functions is the unique solution in $(0,1)$ of

$$
\begin{equation*}
r=n\left\{2 \operatorname{sn}(K / n)[\operatorname{cn}(K / n) \operatorname{dn}(K / n)]^{-1}\left\{[\operatorname{sn}(2 K / n)]^{-1}-\operatorname{zn}(K / n)\right\}-1\right\} . \tag{24}
\end{equation*}
$$

In addition to the extremal points $z_{1}=-1<z_{2}<\cdots<z_{n}=1$, there are
two points $\alpha<\beta<-1$ at which $\left|Z_{n}(z, r)\right|$ takes on the value $\left\|Z_{n}(r)\right\|$. They are given by

$$
\begin{align*}
& \alpha=\left[\operatorname{sn}^{2}(K / n)+1\right] /\left[\operatorname{sn}^{2}(K / n)-1\right] \tag{25}\\
& \beta=\left[k^{2} \operatorname{sn}^{2}(K / n)+1\right] /\left[k^{2} \operatorname{sn}^{2}(K / n)-1\right], \tag{26}
\end{align*}
$$

and they satisfy the relation

$$
\begin{equation*}
2^{1}(\alpha+\beta)+\sum_{j=1}^{n} z_{j}+r=0 . \tag{27}
\end{equation*}
$$

Now we prove

Theorem 6. For $r>\gamma$ and $\rho=\sigma+i \tau \in C_{r}, \sigma \geqslant 0, \tau \geqslant 0, p_{n}(z)$ defined in (7) and (8) is the Zolotarev polynomial $Z_{n}(z, \rho)$ and, consequently, $\rho \in A_{2}$, iff $t=\sigma-r \geqslant t_{a}$, where

$$
\begin{equation*}
t_{a}=-\left[\frac{(1+k) \operatorname{sn}(K / n)}{\operatorname{cn}(K / n) \operatorname{dn}(K / n)}\right]^{2} \frac{1-k \operatorname{sn}^{2}(K / n)}{1+k \operatorname{sn}^{2}(K / n)} \tag{28}
\end{equation*}
$$

Proof. From the above description of $Z_{n}(z, r)$, we have

$$
Z_{n}^{2}(z, r)-\left\|Z_{n}(r)\right\|^{2}=\left(z^{2}-1\right) \prod_{j=2}^{n}\left(z-z_{j}\right)^{2}(z-\alpha)(z-\beta), \quad \alpha<\beta<-1
$$

so that, after some manipulations making use of (27), Eq. (9) becomes

$$
\left|p_{n}(z)\right|^{2}-|P|^{2}=\left(z^{2}-1\right) \prod_{j=2}^{n-1}\left(z-z_{j}\right)^{2} h(z)
$$

where $h(z)$ is the quadratic polynomial $(z-\alpha)(z-\beta)+2 t[z-(1+\alpha \beta) /$ $(\alpha+\beta)]$. By Section $2, p_{n}(z)=Z_{n}(z, \rho)$ iff $\left|p_{n}(z)\right| \leqslant|P|$ or, equivalently, $h(z) \geqslant 0$ for all $z \in[-1,1]$. For $\rho \in C_{r}$, we have to consider negative values of t. The discriminant of $h(z)$ is $4\left(t-t_{d}\right)\left(t-t_{b}\right), t_{a}<t_{b}<0$, where

$$
\begin{aligned}
& t_{a}=[2(\alpha+\beta)]^{1}\left[\left(\alpha^{2}-1\right)^{1 / 2}+\left(\beta^{2}-1\right)^{1 / 2}\right]^{2}, \\
& t_{b}=[2(\alpha+\beta)]^{-1}\left[\left(\alpha^{2}-1\right)^{1 / 2}-\left(\beta^{2}-1\right)^{1 / 2}\right]^{2} .
\end{aligned}
$$

For $t_{h} \leqslant t \leqslant 0$, it is easily verified that the roots of $h(z)$ lie in $[\alpha, \beta]$ while, for $t_{a}<t<t_{b}$, they are complex. Therefore, $h(z)$ is nonnegative in $[-1,1]$ for $t_{a}<t \leqslant 0$. When $t=t_{a}, h(z)$ has a double root at $\lambda=(\alpha+\beta) / 2-t_{a}$ which, in view of (25) and (26), can be written as $\lambda=-\left[1-k \operatorname{sn}^{2}(K / n)\right] /$ $\left[1+k \operatorname{sn}^{2}(K / n)\right]$. Thus λ is in $(-1,0)$ for $0<k<1$. As $h(\lambda)<0$ for $t<t_{a}$,
$h(z)$ is nonnegative in $[-1,1]$ iff $t \geqslant t_{a}$. By (25) and (26), t_{a} is still equal to (28), as asserted.

By virtue of (27), Eq. (5) of C_{r}, can be put in the form

$$
\begin{equation*}
\tau^{2}-(r-\sigma)[\sigma-r-(\alpha+\beta) / 2]=0 . \tag{29}
\end{equation*}
$$

Introducing $\sigma_{a}(k)=r+t_{u}$, where r and t_{a} are defined by (24) and (28), and inserting $\sigma=\sigma_{a}(k)$ in (29) with α and β given by (25) and (26), yield the positive value of $\tau=\tau_{a}(k)$ on C_{r},

$$
\begin{equation*}
\tau_{a}(k)=\frac{(1+k) \operatorname{sn}(K / n)}{\operatorname{cn}(K / n) \operatorname{dn}(K / n)} \frac{1-k \operatorname{sn}^{2}(K / n)}{1+k \operatorname{sn}^{2}(K / n)} \tag{30}
\end{equation*}
$$

The set $\left\{\left(\sigma_{a}(k), \tau_{d}(k)\right\}, 0<k<1\right\}$ defines the boundary curve separating domains of the ρ-plane associated with $\rho \in A_{2}$ and $\rho \in B$. We list several properties of this curve in

Property 1. The functions $\sigma_{d}(k)$ and $\tau_{d}(k)$ satisfy
(a) $\quad\left(\sigma_{a}(k), \tau_{a}(k)\right) \rightarrow\left((n-1) \tan ^{2}(\pi / 2 n), \tan (\pi / 2 n)\right)$ as $k \rightarrow 0$.
(b) $\quad\left(\sigma_{a}(k), \tau_{u}(k)\right) \rightarrow(0,1)$ as $k \rightarrow 1$.
(c) for $n=2,\left(\sigma_{a}(k), \tau_{a}(k)\right)=\left([(1-k) /(1+k)]^{1 / 2}, 1\right), 0<k<1$.
(d) for $n>2, \sigma_{\jmath}(k)>0$, and $\tau_{\jmath}(k)<1,0<k<1$.

Proof. Properties (a) and (b) are direct consequences of the degenerating behavior of elliptic functions [4]. We prove Property (c) by putting [3, Lemma 2] $\operatorname{sn}(K / 2)=\left(1+k^{\prime}\right)^{-1 / 2}, \quad \operatorname{cn}(K / 2)=\left[k^{\prime} /\left(1+k^{\prime}\right)\right]^{1 / 2}, \quad \operatorname{dn}(K / 2)=$ $\left(k^{\prime}\right)^{1 / 2}, \operatorname{zn}(K / 2)=\left(1-k^{\prime}\right) / 2, k^{\prime}=\left(1-k^{2}\right)^{1 / 2}$, in (24), (28), and (30). In Property (d), we first show that, for $n>2, \tau_{u}(k)<1,0<k<1$. Indeed, squaring the expression on the right of (30) and introducing the variable $y=\operatorname{sn}^{2}(K / n) \in(0,1), 0<k<1$, yield the function $F(y)$ whose derivative can be put in the form

$$
F^{\prime}(y)=\frac{(1+k)^{2}(1-k y)\left[(1-k y)^{4}+4 k(1-k)^{2} y^{2}\right]}{(1+k y)^{3}(1-y)^{2}\left(1-k^{2} y\right)^{2}}
$$

Clearly, $F^{\prime}(y)$ is positive in $(0,1)$ for $0<k<1$. Since $y=\operatorname{sn}^{2}(K / n), n>2$, is smaller than $\operatorname{sn}^{2}(K / 2)$ for $0<k<1$, it follows that $\tau_{d}^{2}(k)=F\left(\operatorname{sn}^{2}(K / n)\right)<$ $F\left(\operatorname{sn}^{2}(K / 2)\right)=1,0<k<1$, as announced. Finally, if Property (d) is not true for $\sigma_{a}(k)$, there is some $k_{0} \in(0,1)$ such that $\sigma_{u}\left(k_{0}\right)=0$ together with $0<\tau_{a}\left(k_{0}\right)<1$ and $\rho_{a}=i \tau_{a}\left(k_{0}\right) \in A_{2}$. But, it was mentioned in the introduction that $\rho=i \tau$ does not belong to A_{2} for $\tau \in(0,1)$. We easily check this assertion by noting that, by (3), $Z_{n}(1, \rho) / Z_{n}(-1, \rho)=(-1)^{n}$ ' if $\rho \in A_{2}$,
whereas $Z_{n}(z, i \tau), 0<\tau<1$, given by (1) in which $\delta=\tau^{2}$ satisfies $Z_{n}(1, i \tau)$ $Z_{n}(-1, i \tau)=(-1)^{n}\left(1-\tau^{2}+2 i \tau\right) /\left(1-\tau^{2}-2 i \tau\right)$.

Summing up, we conclude

Corollary 1. Given $\rho=\sigma+i \tau, \sigma>0, \tau \geqslant 0$, with $\tau^{2}>(\gamma-\sigma)(\sigma-\gamma+$ $\left.1+\gamma n^{1}\right), \gamma=n \tan ^{2}(\pi / 2 n)$, there exists $k^{*} \in(0,1)$ such that $\rho \in C_{r^{*}}$, where r^{*} is the corresponding value of r defined by (24). For $\tau<1$, if $\sigma<\sigma_{u}\left(k^{*}\right)$, then $\rho \in B$. Otherwise, $\rho \in A_{2}$ and $Z_{n}(z, \rho)$ is obtained by introducing the extremal points $z_{1}, z_{2}, \ldots, z_{n}$ of $Z_{n}\left(z, r^{*}\right)$ in (3) and (4).

Proof. The result is immediate if we show the existence of $k^{*} \in(0,1)$. To this end, we denote by $G(k)$, the left-hand side of (29) where r, α, and β are given by (24), (25), and (26), respectively. First, we have $G(0)=\tau^{2}-$ $(\gamma-\sigma)\left(\sigma-\gamma+1+\gamma n^{1}\right)>0$ by hypothesis. Then, as $k \rightarrow 1, r \rightarrow+\infty$ and $z_{1}, z_{2}, \ldots, z_{n}$ tend to the extremal points of $T_{n}(z)$. Thus, using (27), we find $r+(\alpha+\beta) / 2=-\sum_{j=1}^{\prime \prime} z_{j} \rightarrow 0$ when $k \rightarrow 1$ so that $G(k) \sim-\sigma r<0$. By continuity, $G(k)$ vanishes at some k^{*} lying in the open interval $(0,1)$, as required.

Unfortunately, the explicit values of all extremal points of the real Zolotarev polynomial are not known in the elliptic case (see [3, bottom of p. 25]), except for $n=2$ where z_{1} and z_{2} are simply -1 and 1 . When $n=2$, it is even possible to determine the explicit expression of $Z_{n}(z, \rho)$ for $\rho \in B$, as is shown in the last theorem.

Theorem 7. Let $Z_{2}(z, \rho)=z^{2}+\rho z-d, \rho=\sigma+i \tau, \sigma \geqslant 0, \tau \geqslant 0$.
(a) If $\tau^{2} \leqslant \min \left\{\sigma, 2 \sigma-\sigma^{2}\right\}$, then $\rho \in A_{1}$,

$$
d=\left[4+\left(r^{*}\right)^{2}+2\left(2-r^{*}\right) \rho\right] / 8
$$

with $\left(z_{1}, z_{2}\right)=\left(-2{ }^{\prime} r^{*}, 1\right)$ and

$$
\left\|Z_{2}(\rho)\right\|=\frac{2^{-1}\left(1+2^{-1} r^{*}\right)^{2}}{\left\{1+\left[\tau /\left(\sigma+1-2^{-1} r^{*}\right)\right]^{2}\right\}^{1 / 2}}
$$

where

$$
r^{*}=2^{\prime}\left\{(2+3 \sigma)-\left[(\sigma+2)^{2}-8 \tau^{2}\right]^{1 / 2}\right\} .
$$

(b) If either $\tau^{2} \geqslant 1,(\sigma, \tau) \neq(1,1)$ or $2 \sigma-\sigma^{2}<\tau^{2}<1$, then $\rho \in A_{2}$, $d=1,\left(z_{1}, z_{2}\right)=(-1,1)$, and $\left\|Z_{2}(\rho)\right\|=|\rho|$.
(c) If $\sigma<\tau^{2}<1$, then $\rho \in B$,

$$
d=2 \cdot\left[\left(1+\tau^{2}\right)-i \sigma\left(\tau-\tau^{-1}\right)\right],
$$

with $\left(z_{1}, z_{2}, z_{3}\right)=(-1,-\sigma, 1)$ and $\left\|Z_{2}(\rho)\right\|=2^{-1}\left(\tau+\tau^{-1}\right)|\rho|$.
Proof. Statements (a) and (b) are particular applications of Theorem 5 and Corollary 1. We solve the third case characterized by three extremal points $z_{1}=-1<z_{2}<z_{3}=1$, by identifying $\left|Z_{2}(z, \rho)\right|^{2}-\left|Z_{2}(1, \rho)\right|^{2}$ with $\left(z^{2}-1\right)\left(z-z_{2}\right)^{2}$ to obtain the asserted values of d and z_{2}.

Finally, the three domains A_{1}, A_{2}, and B of the ρ-plane are exhibited in Fig. 1 for several values of the degree n.

FlG. 1. Domains A_{1}, A_{2}, and B. (a) $n=4$; (b) $n=6$; (c) $n=8$; (d) $n=10$.

References

1. N. I. Achieser, Uber einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abweichen, Bull. Soc. Phys. Math. Kazan Ser. III 3 (1929), 1-69.
2. N. I. Achieser, "Vorlesungen über Approximationstheorie," Akademie-Verlag, Berlin, 1967.
3. B. C. Carlson and J. Todd, Zolotarev's first problem-The best approximation by polynomials of degree $\leqslant n-2$ to $x^{n}-n \sigma x^{n}$ ' in [$-1,1$], Aequationes Math. 26 (1983), 1-33.
4. B. C. Carlson and J. Todd, The degenerating behavior of elliptic functions, SIAM J. Numer. Anal. 20 (1983), 1120-1129.
5. R. Freunid, One some approximation problems for complex polynomials, Constr. Approx. 4 (1988), 111-121.
6. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, Berlin, 1967.
7. T. J. Rivlin, Best uniform approximation by polynomials in the complex plane, in "Approximation Theory III" (E. W. Cheney, Ed.). pp. 75-86. Academic Press, New York, 1980.
8. V. I. Smirnov and N. A. Lebedev, "Functions of a Complex Variable: Constructive Theory," MIT Press, Cambridge, MA, 1968.
9. J. P. Thiran and C. Detalle, On two complex Zolotarev's first problems, Consir. Approx. 7 (1991), 441-451.
10. E. T. Whittaker and G. N. Watson, "A Course of Modern Analysis," Cambridge Univ. Press, London, 1962.
